d0l — Quadrature d01xbc

NAG C Library Function Document

nag multid quad_monte carlo 1 (d01xbc)

1 Purpose

nag_multid quad monte carlo 1 (d01xbc) evaluates an approximation to the integral of a function over a
hyper-rectangular region, using a Monte Carlo method. An approximate relative error estimate is also
returned. This function is suitable for low accuracy work.

2 Specification

#include <nag.h>
#include <nagdO1l.h>

void nag_multid_quad_monte_carlo_1 (Integer ndim,
double (*f) (Integer ndim, const double x[], Nag_User *comm),

Nag_MCMethod method, Nag_Start cont, const double a[], const double b[],
Integer *mincls, Integer maxcls, double eps, double *finest, double *acc,
double **comm_arr, Nag_User *comm, NagError *fail)

3 Description

nag_multid quad monte carlo 1 (d01xbc) uses an adaptive Monte Carlo method based on the algorithm
described by Lautrup (1971). It is implemented for integrals of the form:

bl b2 bn
/ / SO, x50, x,)dx, -+ - dxadxy.
a a ay

Upon entry, unless the parameter method = Nag_Onelteration, the function subdivides the integration
region into a number of equal volume subregions. Inside each subregion the integral and the variance are
estimated by means of pseudo-random sampling. All contributions are added together to produce an
estimate for the whole integral and total variance. The variance along each co-ordinate axis is determined
and the function uses this information to increase the density and change the widths of the sub-intervals
along each axis, so as to reduce the total variance. The total number of subregions is then increased by a
factor of two and the program recycles for another iteration. The program stops when a desired accuracy
has been reached or too many integral evaluations are needed for the next cycle.

4 References

Lautrup B (1971) An adaptive multi-dimensional integration procedure Proc. 2nd Coll. Advanced Methods
in Theoretical Physics, Marseille

5 Arguments
1: ndim — Integer Input
On entry: the number of dimensions of the integral, n.

Constraint: ndim > 1.

2: f — function, supplied by the user External Function
f, supplied by the user, must return the value of the integrand f at a given point.

Its specification is:

double f (Integer ndim, const double x[], Nag User *comm)

[NP3660/8] d0lxbe.1

d01xbe NAG C Library Manual

l: ndim — Integer Input

On entry: the number of dimensions of the integral.

2: x[ndim] — const double Input

On entry: the co-ordinates of the point at which the integrand must be evaluated.

3: comm — Nag User *
Pointer to a structure of type Nag_User with the following member:
p — Pointer

On entry/on exit: the pointer comm — p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm — p, to obtain the original object’s
address with appropriate type. (See the argument comm below.)

3: method — Nag MCMethod Input
On entry: the method to be used.
method = Nag_Onelteration

The function uses only one iteration of a crude Monte Carlo method with maxels sample
points.

method = Nag_Manylterations
The function subdivides the integration region into a number of equal volume subregions.

Constraint: method = Nag_Onelteration or Nag Manylterations.

4: cont — Nag_Start Input
On entry: the continuation state of the evaluation of the integrand.
cont = Nag Cold

Indicates that this is the first call to the function with the current integrand and parameters
ndim, a and b.

cont = Nag Hot

Indicates that a previous call has been made with the same parameters ndim, a and b with
the same integrand. Please note that method must not be changed.

cont = Nag Warm

Indicates that a previous call has been made with the same parameters ndim, a and b but that
the integrand is new. Please note that method must not be changed.

Constraint: cont = Nag_Cold, Nag_Warm or Nag_Hot.

5: a[ndim] — const double Input
On entry: the lower limits of integration, a;, for i =1,2,... n.
6: b[ndim| — const double Input

On entry: the upper limits of integration, b;, for i = 1,2,...,n.

7: mincls — Integer * Input/Output
On entry: mincls must be set to the minimum number of integrand evaluations to be allowed.

Constraint: 0 < mincls < maxcls.

d01Ixbc.2 [NP3660/8]

d0l — Quadrature d01xbc

11:

12:

13:

14:

On exit: mincls contains the total number of integrand evaluations actually used by
nag_multid quad monte carlo 1 (d01xbc).
maxcls — Integer Input

On entry: the maximum number of integrand evaluations to be allowed. In the continuation case
this is the number of new integrand evaluations to be allowed. These counts do not include zero
integrand values.

Constraints:

maxcls > mincls;

maxcls > 4 x (ndim + 1).
eps — double Input
On entry: the relative accuracy required.

Constraint. eps > 0.0.

finest — double * Output

On exit: the best estimate obtained for the integral.

acc — double * Output

On exit: the estimated relative accuracy of finest.

comm_arr — double ** Input/Output

On entry: if cont = Nag_Warm or Nag Hot, the memory pointed to and allocated by a previous
call of nag_multid quad monte carlo 1 (d01xbc) must be unchanged.

If cont=Nag Cold then appropriate = memory is allocated internally by
nag multid quad monte carlo 1 (d01xbc).

On exit: comm_arr contains information about the current sub-interval structure which could be
used in later calls of nag multid quad monte carlo 1 (d01xbc). In particular, comm_arr]j — 1]
gives the number of sub-intervals used along the jth co-ordinate axis.

When this information is no longer wuseful, or before a subsequent call to
nag multid quad monte carlo 1 (d01xbc) with cont = Nag Cold is made, the user should free
the storage contained in this pointer using the NAG macro NAG_FREE. Note this memory will have
been allocated and needs to be freed only if the error exit NE NOERROR or
NE_QUAD_MAX_ INTEGRAND_EVAL occurs. Otherwise, no memory needs to be freed.

comm — Nag User *
Pointer to a structure of type Nag_User with the following member:

p — Pointer

On entry/on exit. the pointer p, of type Pointer, allows the user to communicate information
to and from the user-defined function f(). An object of the required type should be declared
by the user, e.g., a structure, and its address assigned to the pointer p by means of a cast to
Pointer in the calling program, e.g., comm.p = (Pointer)&s. The type Pointer is void *.

fail — NagError * Input/Output

The NAG error parameter, see the Essential Introduction.

[NP3660/8] d0lIxbc.3

d01xbe NAG C Library Manual

6 Error Indicators and Warnings

NE_2 INT_ARG_GE

On entry, mincls = (value) while maxcls = (value). These parameters must satisfy
mincls < maxcls.

NE_2 INT_ARG_LT

On entry, maxcls = (value) while ndim = (value). These parameters must satisfy
maxcls > 4 x (ndim + 1).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, parameter method had an illegal value.

NE_INT_ARG_LT

On entry, ndim must not be less than 1: ndim = (value).

NE_QUAD_MAX_INTEGRAND EVAL

maxcls was too small to obtain the required accuracy.

In this case nag multid quad monte carlo 1 (dOl1xbc) returns a value of finest with estimated
relative error ace, but ace will be greater than eps. This error exit may be taken before maxels non-
zero integrand evaluations have actually occurred, if the function calculates that the current
estimates could not be improved before maxcls was exceeded.

NE_REAL_ ARG _LT
On entry, eps must not be less than 0.0: eps = (value).

7 Accuracy

A relative error estimate is output through the parameter ace. The confidence factor is set so that the
actual error should be less than ace 90% of the time. If a user desires a higher confidence level then a
smaller value of eps should be used.

8 Further Comments

The running time for nag multid quad monte carlo 1 (dO1xbc) will usually be dominated by the time
used to evaluate the integrand f, so the maximum time that could be used is approximately proportional to
maxcls.

For some integrands, particularly those that are poorly behaved in a small part of the integration region,
this function may terminate with a value of acc which is significantly smaller than the actual relative error.
This should be suspected if the returned value of mincls is small relative to the expected difficulty of the
integral. Where this occurs, nag_ multid quad monte carlo 1 (d01xbc) should be called again, but with a
higher entry value of mincls (e.g., twice the returned value) and the results compared with those from the
previous call.

The exact values of finest and acc on return will depend (within statistical limits) on the sequence of
random numbers generated within this function by calls to nag random continuous uniform (g05cac).
Separate runs will produce identical answers unless the part of the program executed prior to calling this
function also calls (directly or indirectly) functions from Chapter g05, and the series of such calls differs
between runs. If desired, the user may ensure the identity or difference between runs of the results
returned by this function, by calling nag random_init repeatable (g05cbc) or
nag random_init nonrepeatable (g05ccc) respectively, immediately before calling this function.

d01Ixbc.4 [NP3660/8]

d01 — Quadrature

9 Example

This example program calculates the integral

d01xbc

dxdx,dx;dx, = 0.575364.

/ / / / 4)C1)C3 eXp 2X1X3)
1 + Xy +)C4)

(d01xbc)

9.1 Program Text

~N
*

nag_multid_gquad_monte_carlo_1

Mark 5, 1998.

Mark 6 revised,
Mark 7 revised,
Mark 8 revised,

2000.
2001.
2004.

* ok ok Kk k F ok

*
~N

#include
#include
#include
#include
#include

<nag.h>
<stdio.h>
<nag_stdlib.h>
<math.h>
<nagdO1l.h>

#ifdef

extern

#endif
static double f(Integer

#ifdef __ _cplusplus

}

#endif

__cplusplus
IICII {

ndim,

#define MAXCLS 20000

int main(void)

double x[],

Example Program.

Copyright 1998 Numerical Algorithms Group.

Nag_User *comm) ;

{
Integer exit_status=0, k, maxcls=MAXCLS, mincls, ndim=4;
NagError fail;
Nag_MCMethod method;
Nag_Start cont;
Nag_User comm;
double *a=0, acc, *b=0, *comm_arr=0, eps, finest;
INIT_FAIL(fail);
Vprintf ("nag_multid_quad_monte_carlo_1 (dOlxbc) Example Program Results\n")
if (ndim>=1)
{
if (!(a = NAG_ALLOC(ndim, double)) ||
1(b = NAG_ALLOC (ndim, double)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
}
else
{
Vprintf ("Invalid ndim.\n")
exit_status = 1;
return exit_status;
}
for (k=0; k<ndim; ++k)
{
alk] = 0.0;
b[k] = 1.0;
}
eps = 0.01

[NP3660/8]

d01xbc.5

d01xbc NAG C Library Manual

mincls = 1000;
method = Nag_ManyIterations;
cont = Nag_Cold;

/* nag_multid_quad_monte_carlo_1 (d0Olxbc).
* Multi-dimensional quadrature, using Monte Carlo method,
* thread-safe

*/

nag_multid_quad_monte_carlo_1(ndim, f, method, cont, a, b, &mincls, maxcls,

eps, &finest, &acc, &comm_arr,

&comm, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_QUAD_MAX_ INTEGRAND_EVAL)

{
if (fail.code == NE_QUAD_MAX_INTEGRAND_EVAL)
{
Vprintf ("Error from nag_multid_quad_monte_carlo_1 (dO
fail.message);

exit_status = 2;
}

Vprintf ("Requested accuracy = %10.2e\n",eps);
Vprintf ("Estimated value = %10.5f\n", finest);
Vprintf ("Estimated accuracy = %10.2e\n", acc);
Vprintf ("Number of evaluations = %51d\n", mincls);

3

else
{

Vprintf ("Error from nag_multid_quad_monte_carlo_1 (dOlxbc
fail.message) ;
Vprintf ("ss\n", fail.message);
exit_status = 1;
}
END:
if (a) NAG_FREE (a);
if (b) NAG_FREE (b);
/* Free memory allocated internally *x/
if (comm_arr) NAG_FREE (comm_arr) ;
return exit_status;
}
static double f(Integer ndim, double x[], Nag_User #*comm)
{
return x[0]1*4.0x(x[2]*x[2])*exp(x[0]1*2.0*x[2])/
((x[1]+1.0+x[3])*x(x[1]+1.0+x[3]))

9.2 Program Data
None.

9.3 Program Results

nag_multid_quad_monte_carlo_1 (dOlxbc) Example Program Results

Requested accuracy = 1.00e-02
Estimated value = 0.57554
Estimated accuracy = 8.20e-03
Number of evaluations = 1728

1xbc) .\n%s\n",

) .\n%s\n",

d0Ixbc.6 (last)

[NP3660/8]

	d01xbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	ndim
	f
	ndim
	x
	comm
	p

	method
	cont
	a
	b
	mincls
	maxcls
	eps
	finest
	acc
	comm_arr
	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_GE
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_QUAD_MAX_INTEGRAND_EVAL
	NE_REAL_ARG_LT

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

